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Abstract. The problem of surface water-wave scattering by two symmetric circular-arc-shaped thin plates sub-
merged in deep water is investigated in this paper assuming linear theory. The problem is formulated in terms of
hypersingular integral equations which are solved approximately using finite series involving Chebyshev polyno-
mials of the second kind. The coefficients of the finite series are obtained numerically by a collocation method.
Very accurate numerical estimates for the reflection and the transmission coefficients are then obtained. The
numerical results are depicted graphically against the wave number for different arc lengths of the plates, the
depth of their submergence and the separation length. Known results for a circular cylinder and horizontal straight
plate are recovered.
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1. Introduction

Within the framework of linearised theory of water waves, scattering of surface water waves by
obstacles of various geometrical shapes constitutes an extremely important class of problems
which have been investigated by many researchers for many decades by using various math-
ematical and computational techniques. The importance of this class of problems lies in their
possible engineering application in designing models of breakwaters which are constructed to
protect coastal areas from the hazards of the rough sea. Only very few problems in this class
involving scattering of normally incident surface water waves by fixed vertical thin plates
in deep water can be solved explicitly. For example, Ursell [1] obtained an explicit solution
when the obstacle has the form of a partially immersed thin vertical plate or a submerged
thin vertical barrier extending infinitely downwards. He used an integral-equation formulation
based on Havelock’s expansion of the water-wave potential. Evans [2] obtained an explicit
solution, when the obstacle is in the form of a submerged thin vertical plate, by using the
complex-variable technique leading to solving a Riemann-Hilbert boundary-value problem.
Porter [3] obtained an explicit solution for an obstacle in the form of a thin vertical wall with a
gap, by using an integral-equation formulation based on an appropriate use of Green’s integral
theorem. Many other researchers studied vertical-barrier problems using various mathematical
techniques. A detailed account of these can be found in Mandal and Chakrabarti [4, Chapter
4]. Also, Levine and Rodemich [5] investigated water wave scattering by two thin vertical
plates which intersect the free surface and are immersed up to the same depth in deep water,
for explicit solution. They used complex-variable theory to obtain the reflection and transmis-
sion coefficients in terms of integrals whose integrands are complicated functions of elliptic
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integrals. The complementary problem of two thin vertical barriers submerged from the same
depth below the free surface and extending infinitely downwards was also solved explicitly by
Jarvis [6] using complex variables.

For obstacles in the form of thin curved plates submerged in deep water, it is no longer pos-
sible to obtain an explicit solution for water-wave scattering problems. However, it may then
be possible to use some approximate methods to obtain numerical estimates for the quantities
of physical interest, namely the reflection and transmission coefficients. For example, Parsons
and Martin [7] considered water-wave scattering by a single thin curved plate submerged in
deep water, whose parametric equations are given, and formulated the problem in terms of a
hypersingular integral equation for the discontinuity of the potential function describing the
motion in the fluid, across the curved plate. They presented numerical results for the reflection
coefficient for a submerged circular arc which is convex upwards and symmetric about the
vertical through the centre of the circle whose arc assumes the position of the plate. Shortly
afterwards, McIver and Urka [8] used two different techniques, one involving the method of
matched series expansions and the other involving a variational approximation procedure, to
obtain numerical results for the reflection coefficient for a curved plate shaped like the top of
a circle submerged in deep water. Their objective was to compare the reflective properties of a
circular-arc-shaped plate with those for a submerged full circle for assessing the suitability of
using circular plates in the construction of a water-wave lens which would focus waves prior
to extracting energy from them.

A pair of symmetric circular-arc-shaped thin plates submerged in deep water may serve
as a simple model for breakwaters, since these are easy to construct and simple to implement
from an engineering point of view. As such, the mathematical study of water-wave scattering
by such a pair of obstacles, particularly their reflective properties, is not without significance.
Unlike scattering problems involving two symmetric thin vertical barriers, either partially
immersed in deep water up to the same depth [5] or fully submerged in deep water from
the same depth below the free surface and extending infinitely downwards [6], which admit
explicit solutions, the scattering problem involving two symmetric circular-arc-shaped thin
plates submerged in deep water cannot be solved explicitly. However, the reflective properties
of such a pair of obstacles can be studied numerically by using an approximate method based
on a hypersingular-integral-equation formulation of the problem in a manner somewhat simi-
lar to that used by Parsons and Martin [7] for studying wave scattering by a single submerged
circular-arc-shaped thin plate. Thus, the present paper is concerned with a generalisation of
the water-wave-scattering problem involving a single arc-shaped thin plate to two symmetric
circular-arc-shaped thin plates submerged in deep water. The line joining the centres of the
circles, whose arcs assume the positions of the two plates, is horizontal, and the two arcs are
symmetrically placed with respect to the vertical through the mid point of this line. Exploiting
the geometrical symmetry, the scattering problem is split into two separate problems involving
symmetric and anti-symmetric potential functions describing the resulting motion in the fluid
due to an incoming surface water-wave train incident on the plates. Appropriate use of Green’s
integral theorem, followed by utilization of the boundary condition on the plates, produces two
integro-differential equations, which are interpreted as equivalent to two hypersingular inte-
gral equations in the discontinuities of the symmetric and anti-symmetric potential functions
across one of the two plates. These hypersingular integral equations are solved numerically
by approximating discontinuities of the potential functions across the plate in terms of two
finite series involving Chebyshev polynomials of the second kind followed by a collocation
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Figure 1. Geometrical sketch of the problem.

method. The reflection and transmission coefficients are then computed numerically by using
these solutions.

Numerical results for the reflection coefficients showing variation of the depth of submer-
gence of the plates, arc lengths of the plates and separation length between the centres of the
circles whose arcs assume the positions of the plates, are depicted graphically against the wave
number in a range of figures. For the case of semicircular plates with vertical diameters, the
reflection coefficient is seen to become very small when the separation between the centres,
i.e., the distance between the vertical diameters of the semicircular plates, is made very small.
However, in this case, the two semicircles almost assume the form of a full circle, and the
phenomenon of very small reflection is consistent with the classical result obtained long ago
by Dean [9] and Ursell [10], namely that a horizontal circular cylinder submerged in deep
water experiences no reflection by a normally incident incoming train of surface water waves.
Again, numerical results are obtained for a submerged obstacle in the form of a convex lens
whose two sides consist of intersecting circular arcs of the same radius and are symmetric
about the vertical mid section. For some frequencies the phenomena of total reflection and
total transmission are observed to occur for such an obstacle. Somewhat similar phenomena
are also seen to occur when the effect of transition from a circular-arc-shaped plate that is
symmetric about the vertical, to a horizontal plate of the same arc length on the reflection
coefficient, is considered.

2. Formulation of the problem

A Cartesian co-ordinate system is chosen in which the y-axis is taken vertically downwards
into the fluid region and the plane y = 0 is the rest position of the free surface. Let two
symmetric circular-arc-shaped thin plates �i(i = 1, 2) be submerged in deep water and
occupy the positions described by arcs of two circles of the same radius b with centres at
(±a, d + b), as illustrated in Figure 1.
A point (x, y) on the plate �i(i = 1, 2) can be expressed as
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x = ±(a + b sin θ), y = d + b(1 − cos θ), α ≤ θ ≤ β, (2.1)

where α, β are the angles made by the radii through the upper and lower ends of the plates
with the vertical, and further, a, b and the angles α, β must satisfy the inequality

a ≥ max(−b sinα,−b sin β). (2.2)

Assuming linear theory, incompressible and inviscid fluid, and irrotational motion, we may
describe an incoming surface wave train by the potential function Re

{
φinc(x, y)e−iσ t ′} where

t ′ is the time, σ is the frequency and

φinc(x, y) = 2e−Ky−iK(x−a) (2.3)

with K = σ 2/g, g being the acceleration due to gravity. Let this incoming wave train be
incident on the two arc-shaped plates from the direction of x = ∞. Let the resulting motion
in the fluid be described by the potential function Re

{
φ(x, y)e−iσ t ′}; then φ(x, y) satisfies

∇2φ = 0 in the fluid region, (2.4)

where ∇2 is the two-dimensional Laplacian operator,

Kφ + φy = 0 ony = 0, (2.5)

φn = 0 on �i(i = 1, 2), (2.6)

where φn denotes the normal derivative at a point on �i(i = 1, 2),

r1/2∇φ is bounded as r → 0, (2.7)

where r is the distance from any submerged edge of �i ,

∇φ → 0 as y → ∞, (2.8)

and

φ(x, y) →
{

φinc(x, y) + Rφinc(−x, y) as x → ∞,

T φinc(x, y) as x → −∞ (2.9)

where R and T denote, respectively, the reflection and transmission coefficients (complex);
their numerical estimation is the principal aim here.

3. Method of solution

Because of the geometrical symmetry of the two plates about the y-axis, φ(x, y) can be split
into its symmetric and antisymmetric parts φs(x, y) and φa(x, y) so that

φ(x, y) = φs(x, y) + φa(x, y), (3.1)

where

φs(−x, y) = φs(x, y), φa(−x, y) = −φa(x, y). (3.2)

Thus, we can restrict our analysis to the region x ≥ 0 only. Now the functions φs,a(x, y)

satisfy (2.4) to (2.8) together with



Water-wave scattering by two symmetric circular-arc-shaped thin plates 301

φs
x(0, y) = 0, φa(0, y) = 0, y > 0. (3.3)

Let the behaviour of φs,a(x, y) for large x be represented by

φs,a(x, y) → e−Ky
{
e−iK(x−a) + Rs,aeiK(x−a)

}
asx → ∞, (3.4)

where Rs,a are unknown constants, and because of (2.9), are related to R and T by

R, T = 1

2

(
Rs ± Ra

)
e−2iKa. (3.5)

For obtaining representations of φs,a(x, y) satisfying (2.4), (2.5), (2.8) and (2.9) we require
the source potential function G(x, y; ξ, η) due to a line source at (ξ, η)(η > 0) as given by
[11]

G(x, y; ξ, η) = log
r

r ′ − 2
∫
C

e−k(y+η)

k − K
cos k(x − ξ)dk (3.6)

with r, r ′ = {
(x − ξ)2 + (y ∓ η)2

}1/2
and the path C is along the positive real axis in the

complex k-plane indented below the pole at k = K.
We now apply Green’s integral theorem to the functions φs,a − e−Ky−iK(x−a) and Gs,a

(x, y; ξ, η) where

Gs,a(x, y; ξ, η) = G(x, y; ξ, η) ± G(−x, y; ξ, η), (3.7)

in the region bounded by the lines y = 0, 0 ≤ x ≤ X; x = X, 0 ≤ y ≤ Y ; y = Y, 0 ≤ x ≤ X;
x = 0, 0 ≤ y ≤ Y ; a small circle of radius ε with centre at (ξ, η) and a contour enclosing the
arc �1, and ultimately we make X,Y → ∞, ε → 0 and shrink the contour enclosing �1 into
the two sides of �1, to obtain

φs,a(ξ, η) = 2e−Kη+iKa(cosKξ,−i sin Kξ) − 1

2π

∫
�1

F s,a(p)Gs,a
np

(x, y; ξ, η)dsp, (3.8)

where p ≡ (x, y) is a point on �1, F
s,a(p) are the discontinuities of φs,a(x, y) across �1 at

p, and Gs,a
np

denote the normal derivative to Gs,a at the point p ∈ �1. It should be noted that
the unknown functions F s,a(p) vanish at the end points of �1 while their derivatives have
square-root singularities at the end points.

Use of the boundary condition (2.6) rewritten as

φs,a
nq

= 0 on �1,

where q ≡ (ξ, η) is a point on �1, produces the integro-differential equations

∂

∂nq

∫
�1

F s,a(p)Gs,a
np

(p; q)dsp = 2π
∂

∂nq

[
2e−Kη+iKa (cosKξ,−i sin Kξ)

]
, q ∈ �1. (3.9)

The order of differentiation and integration in (3.9) can be interchanged, provided the integrals
are interpreted as Hadamard finite-part integrals [5]. This leads to the hypersingular integral
equations∫

× F s,a(p)Gs,a
npnq

(p; q)dsp = 4π
[
e−Kη+iKξ (cos Kξ,−i sinKξ)

]
nq

, q ∈ �1 (3.10)
�1
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where the cross on the integral sign indicates that the integrals are to be interpreted as
Hadamard finite-part integrals.

Let np and nq denote the unit normals at the points p and q, respectively, on �1, then

np = (sin θt ,− cos θt ), nq = (sin θτ ,− cos θτ ), (3.11)

where

θt,τ = α + β

2
+ β − α

2
(t, τ ),−1 < t, τ < 1, (3.12)

the co-ordinates of the points p ≡ (x, y) and q ≡ (ξ, η) on �1 being parametrically expressed
as

x = a + b sin θt , y = d + b(1 − cos θt ),−1 ≤ t ≤ 1,
ξ = a + b sin θτ , η = d + b(1 − cos θτ ),−1 ≤ τ ≤ 1.

(3.13)

The hypersingular integral equations (3.10) are now rewritten as∫ 1

−1
f s,a(t)

[
− 1

(τ − t)2
+ Ks,a(τ, t)

]
dt = hs,a(τ ), −1 < τ < 1, (3.14)×

where we have used the notations f s,a(t) for F s,a(p), and

Ks,a(τ, t) = −-2

4

[
1

sin2 -
2 (τ − t)

− 4

-2(τ − t)2

]

+b2-2

[
− cos(θτ − θt )

{
Y 2 − X2

(X2 + Y 2)2
+ 2KY

X2 + Y 2
+ 2K2.0(X, Y )

}

−2 sin(θτ − θt )

{
XY

(X2 + Y 2)2
+ KX

X2 + Y 2
+ K2/0(X, Y )

}

± cos(θτ − θt )
Z2 − X2

1

(X2
1 + Z2)2

± sin(θτ − θt )
2X1Z

(X2
1 + Z2)2

∓ cos(θτ + θt )

{
Y 2 − X2

1

(X2
1 + Y 2)2

+ 2KY

X2
1 + Y 2

+ 2K2.0(X1, Y )

}

±2 sin(θτ + θt )

{
X1Y

(X2
1 + Y 2)2

+ KX1

X2
1 + Y 2

+ K2/0(X, Y )

}]

(3.16)

with

- = 1

2
(β − α),X = b(sin θt − sin θτ ), X1 = 2a + b(sin θt + sin θτ ),

Y = 2(d + b) − b(cos θt + cos θτ ), Z = b(cos θτ − cos θt ),

.0(X, Y ),/0(X, Y ) =
∫
C

e−kY

k − K
(cos kX, sin kX)dk,

(3.17)

and

hs,a(τ ) = 4πKb-e−Kη+iKa (cos(Kξ + θτ ), −i sin(Kξ + θτ )) . (3.18)
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We have to solve the hypersingular integral equations (3.14), keeping in mind that f s,a(±1) =
0.

As in Parsons and Martin [7] the integrals in (3.17) can be expanded as∫
C

e−kY

k − K

(cos

sin
kX

)
dk = −e−KY

{
(logKr1 − iπ + γ )

(cos

sin
KX

)

+θ1

(
sin

− cos
KX

)}
+

∞∑
m=1

(−Kr1)
m

m!
(

1

1
+ 1

2
+ . . . + 1

m

)(
cos

− sin
mθ1

) (3.19)

where r2
1 = X2 + Y 2, θ1 = tan−1(X/Y ) and γ = 0·5772 . . . is Euler’s constant.

We now approximate f s,a(t) as

f s,a(t) = (1 − t2)1/2
N∑

n=0

as,a
n Un(t), (3.20)

where Un(t) is the Chebyshev polynomial of the second kind and as,a
n (n = 0, 1, . . . , N) are

unknown constants to be found. The square-root factor in (3.20) ensures that f s,a(t), i.e.,
F s,a(p), have the correct behaviour at the end points. Using the expansions (3.20) in (3.14)
we obtain

N∑
n=0

as,a
n As,a

n (τ ) = hs,a(τ ), −1 < τ < 1 (3.21)

where

As,a
n (τ ) = π(n + 1)Un(τ) +

∫ 1

−1
(1 − t2)1/2Ks,a(τ, t)Un(t)dt. (3.22)

To find the unknown constants as,a
n (n = 0, 1, . . . , N), we put τ = τj (j = 0, 1, . . . , N) in

(3.22) to obtain the linear systems

N∑
n=0

as,a
n As,a

n (τj ) = hs,a(τj ), j = 0, 1, . . . , N (3.23)

where τj ’s are collocation points and are chosen as [7]

τj = cos
2j + 1

2N + 2
π, j = 0, 1, . . . , N. (3.24)

The two linear systems (3.23) can be solved numerically by any standard method to determine
as,a
n (n = 0, 1, . . . , N) numerically. Here we have used the Gauss-Jordan method.

To find the reflection and transmission coefficients |R| and |T | we first obtain the quantities
Rs,a by making ξ → ∞ in the representations (3.8) for φs,a(ξ, η) and comparing with (3.4),
with (x, y) replaced by (ξ, η). For this we require the asymptotic results

Gs,a(x, y; ξ, η) → −4πe−K(y+η)+iKξ(i cos kx, sin kx) as ξ → ∞. (3.25)

Thus we find that
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Rs,a = ±e2iKa + 2eiKa

∫
�1

F s,a(p)
∂

∂np

[
e−kηy(i cos kx, sin kx)

]
dsp

= ±e2iKa + 2Kb-eiKa

N∑
n=0

as,a
n

∫ 1

−1
(1 − t2)1/2Un(t)

e−K(d+b(1−cos θt ))

(
i cos

sin
(Ka + Kb sin θt + θt )

)
dt.

(3.26)

The integrals in (3.26) can be evaluated numerically by standard methods. Thus, once as,a
n (n =

0, 1 . . . , N) are found numerically by solving the linear systems (3.23), Rs,a can be computed
numerically from (3.26) for different values of the parameters Kb, d/b, a/b and -. Having
found Rs,a, we can obtain the reflection and transmission coefficients R and T numerically by
using (3.5). Also, as |R| and |T | must satisfy the identity

|R|2 + |T |2 = 1. (3.27)

We can use this as a partial check on the correctness of the numerical results obtained for Rs,a

by using (3.26).

4. Numerical results

The reflection coefficient |R| is computed numerically for various values of the different
parameters. In Table 1 we display the numerical results for |R| showing its convergence with
the truncation size N of the finite series (3.20) for different arc lengths of the two plates by
choosing d/b = 0·5, a/b = 1·0, Kb = 1·5 and α = 0, β = π/2 and π . It is observed from
the table that the truncation size depends on β − α, i.e., the arc lengths of the plates when
d/b and a/b are kept fixed. However, if we keep the arc length fixed and vary the separation
parameter a/b, keeping d/b fixed, or vary the depth parameter, keeping a/b fixed, then, for a
fixed wave number, the corresponding tabular values of |R| (not shown here) would produce
different truncation sizes for the convergence. Thus, the truncation size depends on all the
different parameters associated with the geometrical position of the plates, as well as the wave
number Kb. In our numerical computations for every data appropriate safeguard has been
taken on the truncation size, so as to produce numerical results that are correct up to almost
five decimal places.

In Table 2, a representative set of values |R|, |T | and |R|2 + |T |2 against Kb for d/b =
0·1, a/b = 1·5, α = 0, β = π are given. It is observed that |R|2 + |T |2 almost coincides
with unity for different Kb. Thus, the reflection and transmission coefficients |R| and |T |
computed by using the formulae (3.5), where Rs,a are computed by using the relations in
(3.26), satisfy the energy equality |R|2 + |T |2 = 1. This may provide a partial check on
the correctness of the numerical results obtained here, although this cannot be regarded as
a sufficient requirement for the correctness of the numerical results. However, some other
checks are also provided later in which the results obtained by following the present numerical
procedure for the limiting cases of a submerged full circle and a submerged horizontal plate,
produce known numerical results existing in the literature obtained by following some other
methods.

Figure 2 depicts |R| against Kb for two semi-circular arc-shaped plates with vertical diam-
eters (α = 0, β = π) and constant depth parameter d/b = 0·5 for different separation lengths.
The main feature of the curves for |R| is the occurrence of zeros of |R| as a function of the
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Figure 2. Reflection coefficient for two half-circles
(α = 0, β = π) d/b = 0·5, a/b =1·5(A), 1·0(B)
0·5(C) 0·1(D) 0·001(E) 0·00001(F)

Figure 3. Reflection coefficient for different arc-
lengths a/b=1·5, d/b=0·5, α = 70, β = 340(A),
280(B), 220(C)

wave number. As the separation length a/b decreases, the zeros of |R| are shifted towards
the right. Another important feature is the overall decrease of |R| with the decrease of a/b.
When the separation length becomes negligibly small (a/b = 0·0001), then |R| also becomes
very small for all wave numbers. This result is consistent with the classical result that |R| is
identically zero for a full circular arc, i.e., for a circular cylinder submerged in deep water
irrespective of the depth and the frequency of the incident wave field, obtained first by Dean
[9] and established rigorously by Ursell [10] soon afterwards, since the two semi-circular
arc-shaped plates with vertical diameters assume almost the shape of a full circle when a/b

becomes very small. This result also provides another partial check on the correctness of the
numerical results obtained here.

Figure 3 depicts |R| against Kb for fixed depth (d/b = 0·5) and separation length (a/b =
1·5) but different arc lengths of the plates (α = 70◦;β = 340◦, 280◦, 220◦). It shows the effect
of different arc lengths on |R| for fixed depth and separation length. Here also the occurrence
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Figure 4. Reflection coefficient for different depths.
a/b=1·5, α = 5, β = 150, 0·1(A), 0·5(B), 1·0(C)

Figure 5. Reflection coefficient for two almost full
circles. α = 0, β = 359; α = −90, β = 269,
a/b=1·5, d/b=0·5

of zeros of |R| as a function of the wave number is the principal feature. As the arc length
decreases the zeros of |R| are shifted towards the right. Also, the overall reflection coefficient
decreases with a decrease of the arc length. This is quite plausible, since in general less energy
is reflected by the plates when the arc length decreases, due to the incident wave train facing
less resistance.

Figure 4 displays the dependence of |R| for a fixed pair of circular arc-shaped plates (α =
5◦, β = 150◦) on the depth parameter (d/b = 0·1, 0·5, 1·0). It is observed from this figure
that the overall reflection coefficient decreases with the increase of the depth, and the shifting
of zeros of |R| with the increase of d/b is of not much significance. The overall decrease of
|R| with the increase of d/b is expected, since the disturbance created by the incident wave
train does not penetrate much below the free surface and, as such, less energy is reflected by
an obstacle whose depth below the free surface is considerable.

The reflection coefficient for two submerged almost full circles (two circular cylinders) is
shown in Figure 5. For a/b = 0·5, d/b = 1·5, |R| for almost two full circles is obtained by
choosing α = 0◦, β = 359◦ and also by choosing α = −90◦ and β = 269◦, and the two
curves for |R| for these two sets of values of α and β almost coincide. We have also checked
that for other sets of values of α, β which produce almost full circles, the corresponding curves
for |R| practically coincide. This can be regarded as another partial check on the correctness
of the numerical method utilized here. Again, this figure demonstrates that, although a sin-
gle submerged cylinder experiences no reflection, submerged twin cylinders do experience
reflection for an incoming surface wave train.

The result for a submerged lens-shaped body whose two sides consist of intersecting cir-
cular arcs of the same radius and symmetric about the vertical mid section of the lens, can
be obtained by suitable choices of α, β and a/b. One such choice is α = −π

6 , β = π + π
6

and a/b = sin π
6 = 0·5. Figure 6 displays |R| for such a lens-shaped obstacle for different

values of the depth parameter d/b (d/b = 0·5, 0·1, 0·05, 0·01, 0·0). For moderate values of
the depth parameter (d/b = 0·5, 0·1) |R|, regarded as a function of the wave number Kb, first
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Figure 6. Reflection Coefficient for lens shaped ob-
stacle. α = −π /6, β = 7π /6, a/b=0·5, d/b = 0 (A),
0·01(B), 0·05(C), 0·1(D), 0·5(E)

Figure 7. Reflection coefficient for small β − α,
d/l=0·1, a/l=0·0, α = 0, = π /5(A), π /10(B),
π /180(C)

increases as Kb increases from 0, attains a maximum value and then decreases as Kb further
increases. However, for a small value of d/b (d/b = 0·05), |R| sharply increases from zero
value to almost unity and then decreases as Kb further increases. As d/b is further decreased
(d/b = 0·01), |R| sharply increases almost to unity as before, but then again decreases sharply
to zero and again almost becomes unity as the wave number further increases. This is perhaps
due to interaction of waves between the free surface and the sharp upper edge of the convex
lens-shaped body because of its proximity to the free surface. For d/b = 0 the upper edge
is still below the free surface, but it is nearer to the free surface compared to the previous
situations. In this case |R| initially increases sharply from zero to unity, then oscillates near
the unit value for moderate values of the wave number and becomes almost unity as the wave
number further increases. This type of a lens-shaped body submerged not much below the free
surface appears to possess the property of almost total reflection for most values of the wave
number, and thus may act as an efficient breakwater. Also, the phenomenon of occurrence of
total reflection for some frequencies may have some bearing on the search for trapped modes
in the presence of submerged obstacles.

The effect of transition from a circular-arc-shaped plate that is symmetric about the ver-
tical, to a horizontal plate of same arc length, on |R|, can be visualised by putting a/l = 0,
where 2l is the fixed arc length of the plate, and by decreasing the difference β − α but
increasing b such that b(β − α) has the constant value l. The Figure 7 displays |R| against
the new wave number Kl (when d/l = 0·1) for α = 0◦ and the choices β = 36◦, 18◦
and 1◦ when l = bβ is kept fixed. The configuration α = 0o, β = 1◦ can be regarded as
an almost straight horizontal plate. The qualitative features of the curves for |R| due to the
transition from a circular-arc-shaped plate to a horizontal plate are observed to be the same as
given by Parsons and Martin [7] who, however, investigated water-wave scattering by a single
circular-arc-shaped plate. This observation may also be regarded as another partial check on
the correctness of the numerical results obtained here.
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For various configurations of the two circular-arc-shaped plates (including the situations
when they assume the form of an almost full circle or a horizontal plate) submerged in deep
water, it is observed that the long-wave limit of the reflection coefficient is zero. This is in
conformity with the observation of Martin and Dalrymple [12] and McIver [13] who con-
firmed, by using the method of matched asymptotic expansions, that the reflection coefficient
becomes zero in the long-wave limit.

5. Conclusion

The reflective properties of two symmetric circular-arc-shaped plates submerged in deep water
due to a train of incoming surface water waves have been investigated here assuming linear
theory. The solution method is based on hypersingular-integral-equation formulation of the
problem wherein the hypersingular integral equations are solved numerically and the solutions
are utilized to obtain numerical estimates for the reflection coefficient for various configura-
tions of the plates. This method of solution was utilized earlier in the literature to investigate
the reflective properties of a single circular-arc-shaped plate submerged in deep water. The
particular geometry of two symmetric circular-arc-shaped plates considered here is somewhat
general, and the results for a single almost full circle, two full circles, an almost horizontal
plate or a convex lens-shaped obstacle, whose two sides consist of intersecting circular arcs
of the same radius and are symmetric about the vertical mid section, have been obtained as
special cases. In all the cases, the reflection coefficient is depicted against the wave number
in a number of figures and the main features of the reflection curves have been observed and
their implications discussed. Results have been obtained, some of which might be expected
such as a decrease of the reflection coefficient as the plates become more deeply submerged or
almost zero reflection as the circular-arc-shaped plates assume the configuration of an almost
full circle. The main feature in these curves is the occurrence of zero reflection for some
frequencies of the incoming wave train. Also, for the special configuration of the twin plates
as they assume the form of an obstacle in the form of a convex lens, total reflection occurs
for some wave numbers. This may have some bearing on the search for trapped modes in the
presence of submerged obstacles. It is also important to note that, while for a fully submerged
circular cylinder, the reflection coefficient vanishes identically for all wave numbers, this is
not true for two circular cylinders.

This method of hypersingular integral equations is most general in the sense that it can
be adopted to study water-wave-interaction problems involving obstacles in the form of thin
curved plates having any geometrical shape. In the present paper we have considered only a
pair of symmetric circular-arc-shaped plates, which are submerged in deep water. If the plates
are not symmetrically situated, then also this method can be utilized, although its decompo-
sition into two separate problems will no longer be possible. The case when the plates are
partially immersed can be tackled by this method, but then at one end point which corre-
sponds to the point (or points) of interaction of the plates with the free surface, a boundedness
condition has to be taken care of in solving the hypersingular integral equations numerically.
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